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A theory of molecules in molecules is presented, which permits the computation of the wave 
function of a molecule from the wave functions of fragment molecules by transferring some of the 
localized molecular orbitals of the fragments and recalculating the orbitals in the region of interaction. 
A projection operator is used to obtain orthogonality of the orbitals to be determined to the 
transferred and fixed orbitals. Additional approximations allow the reduction of the dimension of the 
matrices to be diagonalized and the neglect of a part of the basic integrals, which can lead to a 
considerable saving in the computation time. The justification of these approximations will be 
investigated for the case of the molecules Be - Be, Liz - Li/, and for the calculation of the rotational 
barrier in CzH 6. 
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1. Introduction 

The Schr6dinger equat ion is the fundamental  equat ion of molecular  
quan tum mechanics;  it is an exact equation, if relativistic effects are neglected. 
The equat ion itself as well as its solutions describe nature in a very abstract  
way and the connect ion to the terms used to describe molecular structure as 
there are atoms, bonds, inner shells or lone pairs of electrons etc. can only 
indirectly be established. A similar statement can be made of the most  
frequently used approximat ion  to the solution of the Schr~dinger equation, the 
Har t ree -Fock  (HF) approximat ion.  The H F  equat ion and its solutions are 
abstract  and lack the direct interpretability in the terms ment ioned above. 
But it is possible to reformulate the Schr6dinger equat ion and the H F  equat ion 
so that their solutions can be interpreted more  directly in familiar terms and 
thus appeal stronger to physical and chemical intuition. It is possible to make 
this reformulat ion in such a way that  the solutions to the new equations are 
equivalent to the solutions of the original ones. Solving the new equations - 
which depend on the in t roduct ion of a model  - does consequently not  
necessarily involve a loss in rigour. In most  cases the reformulated equations 
are more  difficult to solve than the original ones. F r o m  a mathematical  point  
of view it is only in the cases where convergence difficulties arise that  the 
new equations can be preferable, because the starting point  is known. The 
main advantage of the reformulat ion is that  physical and chemical intuition can 
be used to find solutions to the equations and to establish approximat ions  to 
them. These approximat ions  should be physically appealing and intelligible, be 
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justifiable in a precise manner, and the approximated equations should be easier 
to solve than the equations which formed the starting point. Quite a significant 
amount of work has been done in this direction. A number of approaches, which 
are of concern to the present work, will be shortly mentioned. 

Pseudopotential theory [ 1 - 4 ]  has been developed to remove orthogonality 
constraints in the calculation of wave functions for some subsystem of the 
electrons (e.g. the calculation of the valence electron wave function which must 
be orthogonal to the core electron wave function). It gives ample opportunity 
to introduce model potentials which simplify the calculations. The theory of 
atoms in molecules [5] is based on the idea that the relative ease with which 
atomic wave functions can be calculated can be used to construct molecular 
wave functions from these fragments. Related is the semiempirical method of 
diatomics in molecules [6] and the work of Adams on the solution of the 
SchrSdinger and the HF equation in terms of wave functions which are least 
distorted from products of atomic wave functions [7-9] .  The recent article 
of Ohno [10] et al. should also be mentioned in this context. The theory of the 
separability of many-electron systems in the case of the pi-electron approximation 
has been examined among others by McWeeny [11] and by Lykos and Parr [12]. 
This problem has been in general treated by Huzinaga and Cantu [13]. The 
author has in a previous article presented a method which allows the construc- 
tion of a wave function of a molecule starting from the wave functions of 
fragment molecules [14]. 

One of the most important concepts in the context of the present work is the 
concept of the localized molecular orbitals (LMO's) and their transferability 
property. LMO's closely correspond to the classical chemical concepts of inner 
shells and lone pairs of electrons and bonds linking the atoms in a molecule. 
They bridge the gap between these concepts and the rigorous description of 
molecules by wave functions. A wave function constructed from LMO's is 
equivalent to a wave function constructed from the delocalized canonical 
molecular orbitals, i.e. all expectation values of totally symmetric operators 
calculated with these wave functions are identical. LMO's can be obtained 
directly as solutions of the HF or multiconfiguration equations using a 
pseudopotential method [7, 15-  19]. Peters has developed a different approach 
for the direct calculation of LMO's [20, 21]. These methods correspond to a 
reformulation of the HF equation, which can then be used to introduce 
approximations. (See e.g. Ref. [20]). But in most cases LMO's are obtained by a 
unitary transformation of the molecular orbitals (MO's) resulting as solutions of 
the HF equation in their standard form. LMO's have been introduced and 
examined mainly by Lennard-Jones and coworkers, by Boys, and by Edmiston 
and Ruedenberg and they have proved to be extremely useful [22-29]. The 
aspect of the LMO's which is of greatest concern to the present work is their 
approximate transferability property. LMO's can be expected to be transferable 
among molecules having chemically related structures because they are maximally 
separated from each other and because they are themselves restricted to a 
minimal spatial region (for a discussion see Ref. [25]). Transferable orbitals have 
been the subject of a number of investigations [14, 24, 25, 2 9 -  37], although few 
calculations have been performed which calculate an atomic or molecular wave 
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function by an actual transfer of LMO's [14, 33, 34]. Shull et al. were to the 
knowledge of the author the first ones to report such a transfer of LMO's (in their 
case geminals) [33]. The detailed examination of the structure of the LMO's 
and an energy analysis based on them has also contributed to an understanding 
in this respect [24, 36]. The study of molecular momentum distributions and 
Compton profiles both by experimental and theoretical methods yields informa- 
tion on the transferability of LMO's and deserves notice in this context [37]. 

The transfer of LMO's or geminals and the transfer of parameters associated 
with them is only one aspect of the problem, although it constitutes the most 
frequently used path. Different approaches are possible. Lipscomb and coworkers 
made investigations in which they transferred matrix elements of the HF 
operator from smaller molecules to larges ones in order to calculate the wave 
function of the larger molecule [38]. Bader et al. defined a spatial partitioning of 
total molecular charge distributions independent of an orbital concept and 
discussed the transferability of molecular energies [39]. Christoffersen and 
coworkers transfer elements of the one-particle reduced density matrix between 
structurally related molecules, but use it only as a starting point for a SCF 
calculation [40-1. Nelander discusses the partitioning of the first order density 
matrix and its use for bond energy schemes [41]. 

There are other constructive ways to generate molecular wave functions, 
which do not or which do not necessarily involve the variation principle. 
These methods start in general from the hybridization concept. The first step 
is the construction of hybrids which are combined to form one- or two-center 
localized bond orbitals using polarity parameters. These bond orbitals are then 
used to build the molecular wave function. Chemical experience and experimental 
data on the one hand or the variation principle on the other hand determine 
the necessary parameters. There are many variants of this method [42-44]. The 
wave function can surpass HF wave functions in quality, if the correlation energy 
is taken into account by perturbation theory [45]. The fundamental concept in 
these approaches is besides the concept of hybrids again the one of localized 
orbitals. 

As mentioned above a method has been introduced which permits the 
computation of the wave function of a molecule from the wave functions of 
fragment molecules by transferring some of the LMO's of the fragments and 
recalculating the orbitals in the region of interaction [14]. In the present 
article this topic will be pursued and the method generalized. The formal 
theory will be presented in Sect. 2 together with a brief outline of the physical 
background. The application of the method to study the interaction of two Be 
atoms, the interaction of two Li2 molecules and to calculate the barrier to 
internal rotation in ethane is discussed in Sect. 3. 

2. Theory 

If one introduces a change in some part of any "large" molecule by a 
substitution or an isomerization, the effects of this change on the electronic 
distribution will be important mainly in its immediate neighbourhood. By 
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allowing for the electronic rearrangement in this immediate neighbourhood, 
which will be called the region of interaction, it should be possible to obtain a 
good approximation to the actual process in many cases. There will certainly be 
an electronic rearrangement in the far distant parts of the molecule too, but this 
should be only of minor importance for many practical questions. To take 
advantage of this one has to look for molecular fragments which allow to 
construct new molecules from these fragments such that the wave function of 
this new molecule constructed from the fragment wave functions is a good 
approximation to the wave function calculated by an ab initio method. For the 
general case of a molecule A - B  being formed from two molecules A - X  and 
B - Y  (where A, X, B, and Y are any molecular fragments): 

A - X + B - Y = A - B + remainder 

one would distinguish three different spatial regions in each of the molecules 
A - X  and B - Y :  a region which will be discarded, a region of interaction, and a 
fixed core which will be transferred unaltered. This approach should open a 
general path to the calculation of approximate wave functions of molecules 
from molecular fragments. 

The considerations will be restricted to the closed shell case of the wave 
functions constructed from real orbitals for all of the molecules A - X ,  B -  Y, 
and A - B [46]. Let 

in short 

( r l ,  S1 ' " " ,  r2nA ' S2na [ ~IA) 

= (2hA ! ) � 8 9  s 1 I1 + ) ( r 2 ,  s211 - ) ' "  (r2nA, s2nA ]FIA -- ) }  

]TA)=(2nA!)~AA{i~__ ~ I i + ) ] i - - ) }  (1) 

be the wave function for molecule A - X  with 2n A electrons. A g is the anti- 
symmetric projection operator for this case. The MO's [i) are determined from 
the HF equations for A - X 

where 

FAli) = ~ eu,]i'), (2) 
i' 

V A = h A + Z2J - (3) 
i 

hA(D=-- �89 and jA and K~ are Roothaan's Coulomb and ex- 

change operators [-463 

K~ = (il r;2*l)li) . (4) 
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[+ ) and [ - )  denote the two possible spin states of a spin 1/2 system. The 
product is over all occupied MO's of molecule A -  X. In the same way let 

/ n~ } 
I ~B) = (2nB !)~A B 1-[ IJ + )Ij - ) 

U = 1 
(5) 

be the wave function of molecule B - Y  with similar definitions for the operator 
and quantities appearing in (5). The letter i will be used for the MO's of molecule 
A - X  and the letter j for the MO's of molecule B - Y .  The MO's IJ) are 
solutions of the HF equations for molecule B -  Y:  

where 

F alj ) = ~ e j j, IJ'), (6) 
j '  

B B F B = h B + ~. 2Jj - Kj . (7) 
d 

For a proper description of the different regions in the molecules it is necessary 
to construct the wave functions from LMO's. The orbitals li) and [j) are thus 
the LMO's describing inner shells and lone pairs of electrons and bonds in the 
two molecules. LMO's can be defined as solutions of the HF equations 
corresponding to a non-diagonal matrix of Lagrangian multipliers [-24]. This is 
why this form of the equations has been given in (2) and (6). 

The following ansatz is made for the wave function of molecule A - B in this 
theory of molecules in molecules (MIM): 

[ T ) = ( 2 n ! ) ~ A { H ' l i + )  I i •  [ I ' [ i+  ) ] J -  ) I I  t i n + ) I r a - ) }  
~ ~ (8)  

=(2n!)~ A {H Ik § ) l k -  > [ I lm§ 
k m 

A is the antisymmetric projection operator for the entire molecule containing 
2n electrons. Note that 2n =t = 2n a + 2n a in general! The prime on the product 
sign indicates that a number of LMO's is left out to be deleted completely or 
to be recalculated in the region of interaction. The remaining LMO's (for which 
the letters k and 1 will be used) are transferred unaltered. They form the fixed 
core. These orbitals are nonorthogonal because they result from calculations on 
different molecules. The MO's Im) are to be determined for the description of the 
new bonds formed and of their neighbourhood. They will be required to be 
orthogonal to the fixed orbitals Ik). This can be done by using the projection 
operator for orthogonality 

P =  1 - ~ l k S  S~ ~ UI; p 2 = p ,  p+ = p ,  
k,l 

(9) 

where S -1 is the inverse matrix of the overlap matrix S = { ( k l l ) }  [47]. An 
outer projection by P of the operator determining the MO's Im) gives orbitals 
exactly orthogonal to the MO's lk) [47]. If the MO's lk) can be regarded as 
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approximately orthogonal (e.g. because of spatial separation) this projection 
operator simplifies to 

P =  1 - ~ l k >  <kl. (10) 
k 

The approach suggested by Huzinaga and Cantu [13] is identical in the ansatz, 
and differs only by the use of the coupling operator technique [48, 49] instead 
of the present method of outer projections, if no further approximations are 
introduced. 

The MO's [m> are to be determined such that the total energy of the system 
is minimized. The total energy is calculated as the expectation value of the 
Hamiltonian operator H of the entire molecule A -  B with the wave function 
of equation (8). The expression for the total energy in the case of nonorthogonal 
orbitals is given by 

<~gIHI ~> = ~ <n~lhln2) D(nlln2) 
. . . . .  (11) 

+ 2  ~ [nlnztn3n4] D(nln31nen4)' 
h i ,  ?/2, ?/3~n4 

where the Ini> are any MO's, 

[ i j [k l ] :  = .f~ <i[ r t> <r I [J> ri-2 ~ <kl r2> <r2 l/> d3 r ,  d 3 re, (12) 

and D(ilj) and D((ilkl) are minors of the determinant 

D = det {<ilJ>} �9 (13) 

A clear discussion of MO theory for nonorthogonal orbitals can be found in a 
series of papers by L/Swdin [50]. Variation of the orbitals [m> to get the minimum 
energy in the restricted subspace created by the projection operator P leads to 
the equations 

PFPIm)  = e, , lm),  (14) 

where the matrix of Lagrangian multipliers is diagonal, because the MO's Ira> 
are not required to be LMO's. Note that the operators P and F in (14) do not 
commute because the MO's [k> are not eigenfunctions of the operator F! 
The HF operator F in (14) is given by 

F =  F . . . .  + ~ 2 J , . -  K,. (15) 
m 

F . . . .  = h + ~(2<k[r~-2 ~ [l) - (krr?za[>[l>) Ski 1 (16) 
k,l 

If the MO's [k> are orthogonal or if their nonorthogonality is neglected, 
(16) simplifies to 

Fcore = h + ~ 2 J  k - K k , (17) 
k 
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where the familiar Coulomb and exchange operators appear. Since the projec- 
tion is done prior to diagonalization optimal orthogonal MO's Ira) are 
obtained - optimal with respect to the fixed core. 

The ansatz (8) and (14) represents an approximation to the exact HF wave 
function and HF equation. But the theory can be made exact by extending the 
work of Lykos and Parr [12] on the pi-electron approximation to the present 
case, where the orthogonality of the orbitals is not garanteed by symmetry. 
(See also Ref. [13]). Above, the trn)-electron approximation has been taken. If 
the MO's [k) are now determined with the MO's Ira) held fixed, the [k)-electron 
approximation is taken. This process can be continued until self-consistency is 
reached. The procedure is a generalization of the usual SCF procedure. The 
orthogonality of the orbitals is garanteed by employing the method of outer 
projections, which corresponds to making the variations in a restricted subspace 
[-47]. The MIM method can be made "exact" still in another way. If the region 
of interaction is the entire molecule, the wave function calculated is identical 
with the SCF wave function. This is again not the aim of the present approach, 
but it offers the possibility of obtaining wave functions differing in quality from 
the SCF wave function to more approximate ones. This method is thus capable 
of providing in a relatively nonarbitrary way an information on which MO's can 
be transferred, i.e. which MO's are not appreciably affected by the formation of 
the new bonds. Simultaneously it can give information on the energy contribu- 
tions of the individual inner shells and lone pairs of electrons and bonds to the 
total energy change of a process. 

The total SCF energy is always a lower limit to the energy expectation value 
in the MIM approximation, if the nonorthogonality of the MO's is properly 
taken into account. No general statement can be made if this nonorthogonality 
is neglected. But because the sets of transferred orbitals {]i)} and {[/)} are 
spatially well separated such an approximation should frequently be justified and 
give reliable answers. 

The method discussed so far appears to be a reasonable approach which can 
be expected to give reliable answers. Applications made so far justify it [14, 51]. 
But it must be mentioned that the transfer of LMO's for some part of the 
molecule together with the redetermination of the MO's in the region of 
interaction does not lead to a considerable saving in the computation time. 
All integrals over the basis functions have to be evaluated, only the iteration 
part of the calculation might be shortened. This is not the final aim. A theory of 
molecules in molecules is desired which permits a significant saving in the 
computation time, i.e. gives the possibility to circumvent the "N 4 law" of the 
computational expense (where N is the number of particles or basis functions) 
at least in some part of the integral calculation. It is consequently necessary to 
proceed from the above ansatz and introduce further approximations. 

Since only the MO's in the region of interaction are going to be redetermined 
and since the interest is in "larger" molecules, it might be acceptable to restrict 
the expansion of the MO's Ira) to a subset F of the total set of basis functions 
(a LCAO expansion form for the MO's is assumed from now on): 

[m> = ~ [p>Cvm. (18) 
p~F 
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In mathematical terms this is an outer projection of the operator PFP of 
equation (14) by the projector on the manifold spanned by the basis functions 
in the set F according to 

OrPFP O r , (19) 

where the projection operator O r is given by 

Or= ~ [p) S~ 1 (ql;O2=Or, O~ =Or. (20) 
p, q~F 

S-1 is the inverse matrix of the overlap matrix S = {(p]q)}, p, q s F. Such an 
approach reduces the dimension of the matrices to be diagonalized, but it does 
not affect the number of integrals which have to be evaluated. If this number is 
to be reduced as well, still another approximation must be made. 

The basis functions whose centers are distant from the region of interaction 
should play only a minor role for the orthogonality of the MO's Ira) to the 
transferred LMO's Ik). The LMO's [k) to which orthogonality can be expected 
on spatial ground could be left out from the projection operator P and the basis 
functions which mainly contribute to these LMO's could be taken out from the 
entire set of basis functions for the expansion of the orbitals in the projection 
operator. This means the operator P in equation (9) is replaced by 

P' = 1 - Y/Ik) S~ ~(ll, (21) 
k,l 

where the prime on the summation sign indicates the deletion of some of the 
orbitals. Then an outer projection of the operator P' is made according to 

O~P'O~, (22) 

where 

0~= ~ Ir) S~ l (sl; O~=O~,O~- =04  (23) 
r , s ~  

is the projection operator on the manifold of the basis functions in the set A, 
which are to be included in the operator P'. This approximation results in a 
reduction of the number of integrals which have to be evaluated. For the 
success of the method it is essential that this approximation works. The final 
operator determining the MO's Im) is given by 

O r 04 P'O~ FO~ P' O 4 O r (24a) 

Note: F must always be a subset of A:FC=A! The other case is physically 
meaningless. The operator therefore simplifies to 

OrP' 04 FOn P' Or (24b) 

because 

OrOa = OdOr = Or. (25) 

This operator permits to save computational time, but it has acquired a relatively 
complicated structure. One main disadvantage is that the additional approxima- 
tions introduced by the projections result in a nonorthogonality of the MO's 
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Im) to the transferred LMO's [k). The final justification of the approach can 
only be done by calculations. 

Although these equations have been derived for the case of two fragments 
joined together, it is easily extended to any number of fragments. In fact the 
final equations are valid for the general case. 

A few more points have to be discussed in this context. If one wants to avoid 
the calculation of all integrals, which is one intention of the theory of molecules 
in molecules, the nonorthogonality of the MO's has to be neglected - otherwise 
all integrals will appear again. The expression for the electronic energy then 
takes the well-known form 

Eet=2~(nlhln)+ ~ 2 J . 1 . 2 - K  . . . . .  (26) 
n h i , n 2  

where J,1,2 and K .... are the Coulomb and exchange integrals between any 
orbitals In1) and In2). In this expression the interaction terms Jij and Kij 
between an orbital transferred from molecule A - X  and another orbital 
transferred from molecule B -  Y appear. These terms necessitate the calculation 
of the integrals over all basis functions, if one is not willing to approximate some of 
these integrals or to approximate the energy terms Jij and K~j directly. The 
simplest method would be to make a point charge approximation for every 
orbital, which would be justified for large distances" 

Ki~ = 0 
(27) 

Jij = I ri - r~l- 1, 

where r~ = (ilRli) is the charge centroid of LMO li). 
This particular approximation is not necessary and more refined procedures can 
be used. All two-electron integrals have then to be evaluated exactly except the 
integrals between the basis functions in the two fixed cores; this will be an 
appreciable part for larger molecules. 

Equation (24) for the operator defining the MO's Im) is complicated and 
because of the multiple projection the question arises, whether it is still possible 
to give bounds to the eigenvalues and energy expectation values as in the case 
of a simple projection. The HF operator is projected according to Q+FQ by an 
operator Q = OAP' Or" Q is a product of projection operators, but itself is not a 
projection operator due to the fact that the projection operators O r and Od do 
not commute with P' (i.e. Qz =I=Q and Q+=I= Q). However, it is still possible to 
derive bounds. LiSwdin [47] has shown that for an outer projection of a self- 
adjoint operator A, which is bounded from below, by an arbitrary projection 
operator 0 

OAO=A with o e = 0 ,  O + = 0  (28) 

the eigenvalues of A are upper bounds to the eigenvalues of A in order 

where 

ak < -6k, (29) 

Alk)=aklk) and A [ k ) = g k f ) .  (30) 
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]k) and Ik) are normalized eigenfunctions. (See also Ref. [-52]). Let P be 
another projection operator 

p 2  _-- p, p + = p (31) 

which does not commute with O 

[P, O] + 0. (32) 

According to the definition the operator 

P-AP = ~ (33) 

is an outer projection of A with respect to P. The eigenvalue equation for .~ is 

~ l~)  = ~kl~) (34) 

and - applying L6wdin's theorem again - the eigenvalues ~k are upper bounds 
to the eigenvalues of A in order. Using equation (29) one obtains 

ak < -dk < ~k" (35) 

This result applies in the following form to the projected HF operator of the 
theory of molecules in molecules: 

~,,(F) < e,,(0 4 FO a) < e,,(P'O AFO 4P') < e,,(O AP'O AFO aP'O A) 

< em (Or 04 P'OA F04 P' 04 Or), (36) 

where the em are the eigenvalues of the operators given in brackets. The same 
series of inequalities can be written down for the energy expectation value. 
(The operators are given in brackets.) 

E(F) < E(OaFOA) < E(P'O4FOAP') < E(O4P'OAFOAP'OA) (37) 

< E(OrO4P'OAFO4P'O4Or). 

This result will be taken up again in the applications. 
Another important bound can be derived in a similar way as above. Let the 

sets F' and/or A' be obtained from F and/or A by subtracting some functions 
(subject to the restriction that F '=  A' whatever members the two sets have). 
For the projection operators Or, and 04, the following relations hold 

Or, Or = Or Or, = Or, (38) 
and 

04, OA = 04 04, = 04, �9 (39) 

The reduction of the number of basis functions can thus be written as 
another outer projection 

Or, Or P' O4F O4P' OrOr, = Or, P' OAF O4P'Or, (40) 
and 

Or P' O4, 04 F O4 04, P' Or = Or P' O4, F O4, P' Or . (41) 
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Because of this fact one can immediately write down the following in- 
equalities: 

em(OrP' O~F O~P' Or) <=em(Or, P' OjF O~P' Or ,) (42) 

em(Or P' O~F O~ P' Or) < em(Or P' O~, F Od, P' Or) (43) 

and for the energy expectation value 

E(OrP' OdF O~P'Or) < E(Or, P' G F  GP'  Or,) (44) 

E ( Or P' Od F Oa P' Or) < E ( Or P' O~, F O~, P' Or) . (45) 

This supplies the rigorous basis for the statement made before concerning 
the quality of the approximated wave functions. The physical argument is that 
one is working in more and more restricted subspaces which consequently raises 
the energy. 

In the applications the justification of the four approximations introduced 
by 1) Or, 2) 04 together with the approximation of P by P', 3) the neglect of 
the nonorthogonality of the MO's, and 4) the point charge approximation in 
the calculation of the total energy will be examined. 

3. Applications 

3.A. Be-Be 

Wave functions have been calculated for the Bez molecule for various 
distances in the range from 2 to 12 a.u. On each atom a basis set of 9 s-type 
Gaussian functions [53], which are left completely uncontracted, is used to 
expand the MO's. For the Be atom the resulting total SCF energy is 
ESCV=- 14.572068 a.u. This compares with the value calculated by Clementi 
using a Slater-type basis: ESCV=-14.573020a.u. [54]. The energy values cal- 
culated for the Be2 molecule by the ab initio method are given in Table 1, the 
potential curve is a repulsive curve. The calculated wave functions serve as a 
simple laboratory to test the approximations introduced in Sect. 2. The canonical 
MO's are transformed to LMO's by the method of Edmiston and Rueden- 

T a b l e  1. T o t a l  S C F  energies  for  the  Be 2 mo lecu le  (all values in a t o m i c  units)  

R E scF 

2.0 - 2 8 . 4 5 7 6 2 6  

3.0 - 28.937517 
4.0 - - 2 9 . 0 7 2 8 9 6  
6.0 - 29.134913 
8.0 - 29.143207 

12,0 - -29 .144131  
co - 29 .144137 
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Table 2. Total energies for the Be 2 molecule calculated in the MIM approximation (all values in 
atomic units, for notation see text) 

R E MIM a E MIM b E MIM a E MIM b 

Approximation F 18 A 18 Approximation F 16 A 18 

2.0 -28.450985 -28.451053 -28.450818 -28.453928 
3.0 -28.932477 -28.934408 -28.932356 -28.937243 
4.0 -29.070994 -29.071620 -29.070897 -29.074349 
6.0 -29.134804 -29,134818 -29.134730 -29.137385 
8.0 -29.143202 -29.143195 -29.143135 -29.145732 

12.0 -29.144131 -29.144131 - 29.144066 - 29.146664 

Approximation F 14 A 18 Approximation F 12 A 18 

2.0 -28.449401 -28.480178 -28.446801 -28.577635 
3.0 - 28.931497 -28.960672 - 28.929688 - 29.050076 
4.0 -29.070222 - 29.096477 - 29.068847 -29.179064 
6.0 -29.134170 -29.158525 -29.133064 -29.232825 
8.0 - 29.142623 - 29.166574 - 29.141584 -29.238986 

12.0 -29.143565 -29.167444 -29.142538 -29.239556 

Approximation F 16 A 16 Approximation F 14 A 16 

2.0 --28.450814 -28.450853 -28.449345 -28.473663 
3.0 - 28.932354 - 28.934262 - 28.931457 - 28.954868 
4.0 -29.070895 -29.071501 --29.070189 -29.091052 
6.0 -29.134728 --29.134723 -29.134145 -29.153459 
8.0 - 29.143133 --29.143108 - 29.142602 - 29.161601 

12.0 - 29.144064 --29.144045 - 29.143544 --29.162488 

Approximation F 12 A 16 Approximation F 14 A 14 

2.0 -28.446708 -28.573309 -28.449091 -28.448388 
3.0 - 28.929626 - 29.046714 - 28.931284 -28.932593 
4.0 -29.068796 -29.176071 -29.070045 -29.070129 
6.0 -29.133022 -29.230020 -29.134037 -29.133534 
8.0 -29.141545 -29.236234 -29.142508 -29.141982 

12.0 -29.142500 - 29.236815 - 29.143453 - 29.142933 

Approximation F 12 A 14 Approximation F 12 A 12 

2.0 - 28.445775 - 28.534407 - 28.441889 -28.434050 
3.0 -28.928968 -29.014654 -28.925911 -28.921521 
4.0 - 29.068250 - 29.147044 - 29.065682 - 29.060888 
6.0 -29.132577 -29.203173 -29.130656 -29,125515 
8.0 -29.141140 - 29.209981 - 29.139443 - 29.134258 

12.0 -29.142104 -29.210677 -29.140453 -29.135264 

a nonorthogonality of the MO's taken into account 
b nonorthogonality neglected 

b e r g  [24 ] .  T h e  a p p r o x i m a t i o n s  a r e  a p p l i e d  in  t h e  f o l l o w i n g  w a y ,  T h e  i n n e r  

she l l  L M O ' s  wi l l  b e  t r a n s f e r r e d  a n d  t h e  o u t e r  she l l  o r b i t a l s  r e c a l c u l a t e d .  A 

se r i es  o f  c a l c u l a t i o n s  h a s  b e e n  m a d e  w i t h  d i f f e r e n t  n u m b e r s  o f  b a s i s  f u n c t i o n s  in  

t h e  se t s  F a n d  A. T h e  f o l l o w i n g  n o t a t i o n  wil l  be  u s e d  to  de f i ne  t h e  i n d i v i d u a l  

c a l c u l a t i o n s .  F o r  b o t h  s e t s  F a n d  A t h e  t o t a l  n u m b e r  o f  f u n c t i o n s  w h i c h  t h e y  
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Fig. 1. Energy difference between MIM and SCF result for Be2:AE = E M~M-EscF; approximations 
F 18 A 18, F 16A 18, F 14A 18 (for notation see text), a: nonorthogonality of the MO's taken into 

account, b: nonorthogonality neglected 

contain is written behind the respective symbol. F 18 A 18 e.g. means that all basis 
functions are included. For the other approximations functions are excluded 
stepwise from the two sets, where the deletion is done in the sequence of de- 
creasing exponential parameter of the functions. The calculations performed are 
defined by the symbols F 18 A 18, F 16 A 18, F 14 A 18, F 12 A 18, F 16 A 16, ... and 
finally F12 A 12. In addition the letter a denotes that the energy expectation 
value is calculated taking the nonorthogonality of the MO's into account, the 
letter b denotes the neglect of this nonorthogonality. For the orthogonalization 
the method of L6wdin has been used [55]. The total energies, which have 
been computed for all the approximations, are given in Table 2. In Fig. 1 the 
energy differences A E = E MIM- E scv are plotted for some examples which are 
representative for the whole set of calculations: the curve for F 12 A 18 is similar 
to the one for F 14 A 18; F 16 A 16 corresponds to F 18 A 18, from which it differs 
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Table 3. Interaction energy between the two sets of transferred LMO's for Be 2 calculated exactly 
(Xe~) and by a point charge approximation (Xpc). The nonorthogonality of the MO's is neglected. 

(All values in atomic units) 

R Xe~ Xvc AX = Xvc - Xe~, 

2.0 1.989410 2.0 0.010590 
3.0 1.330469 1.333333 0.002864 
4.0 0.999347 1.0 0.000653 
6.0 0.666638 0.666667 0.000029 
8.0 0.499999 0.5 0.000001 

12.0 0.333333 0.333333 0.0 

very little; F 1 4 A 1 6  is similar to F 1 4 A  18 etc. Considering the figure the 
following statements can be made. The curves a and b do not meet in general for 
R ~  oo and do in general not approach the limiting value zero, but they run 
parallel to the abscissa for interatomic distances larger than approximately 6 a.u. 
(for some cases - -  the poorer  approximations - -  8 a.u.). This then corresponds to 
a parallel shift of the potential curves, which is the result one would like to  obtain. 

If a number  of basis functions is completely excluded from the expansion of the 
outer shell MO's  - -  which is the case for most of the approximations - -  the 
limiting value zero for the energy difference A E can no longer be reached and 
further on the curves a and b can no longer meet. It is the nonorthogonali ty of 
the outer shell MO on any Be a tom to the inner shell MO on the same atom 
which causes this. The first conclusion to be drawn is that it is advisable to 
keep the sets F and A identical, which will be done in the subsequent investigations. 
The difference between curves a and b, which determines the reliability of the 
calculations where the nonorthogonal i ty  is neglected in the computat ion of the 
energy expectation value, is minimal for this case. There is in fact little com- 
putational advantage in allowing the sets F and A to differ. The operator defining 
the MO's  Ira) thus simplifies to (Or = O4 = O): 

O P ' O F O P ' O .  (46) 

In Table 3 the energy values for the exactly calculated interaction energy of 
the transferred LMO's,  for the point charge approximation to it, and their 
difference A X  = X v c -  Xex is given. This approximation seems to be justified for 
distances greater than about  6 a.u. 

3.B. Li2-Li  2 

The interaction of two Li 2 molecules is more interesting than the interaction 
of two Be atoms. 9 s-type functions contracted to 6 s-type functions 1-53] aug- 
mented by 2po--type Gaussian lobe functions were used on every Li atom. The 
parameters for the p-type functions are: ~/1 = 0.5, R 1 = -1 -0 .075  a.u. and ~]2 = 2.0, 
R2 = --+ 0.065 a.u. For  the experimental bond length R = 5.0504 a.u. the calculated 
total SCF energy is E S C F = -  14.862665 a.u. This compares with the result of 
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Table 4. Total SCF energies for the linear geometry of the Li4 molecule (the bond distance of the 
two Li2 molecules is kept fixed at its experimental value of 5.0504 a.u.; all values in atomic units) 

R E scv 

3.0 -29.645618 
4.0 - 29.699425 
5 .0504 -29.720226 
6.0 - 29.725574 
8.0 --29.726184 

12.0 --29.725281 
20.0 --29.725316 

-29.725330 

E(Li~ } [o.u.] 

-29.72( 

-29.725 
o b 

ESC~(2Li~) 

I I I. 

5.0 10.0 15.0 R [o .u. ~] 

Fig. 2. Potential energy curve for Li 2 -Li2; approximation 1, 1, 4 F 32 (for notation and definition 
of a, b, c see text) 

Ransi l  and  Sinai :  E s c F =  - 1 4 . 8 7 1 5 2  a.u. [56]. The b o n d  dis tance  of  the two Li z 
molecules  is held  fixed at  R = 5.0504 a.u., only  the dis tance between the two 
molecules  is var ied  for the l inear  conf igura t ion  in the range f rom RLiLr = 3.0 a.u. 
to RLiLr = 20.0 a.u. The energy values are given in Table  4 and  the poten t ia l  curve 
is p lo t ted  in Fig. 2, curve a. I t  is interest ing to  observe that  the Li4 molecule  is 
b o u n d  relat ive to two Li2 molecules  with a b ind ing  energy of app rox ima te ly  
0.54 kca l /mole  at a d is tance  of abou t  7.5 a.u. At a dis tance of abou t  12 a.u. there  
is an ext remely  small  m a x i m u m  of a p p r o x i m a t e l y  0.03 kca l /mole  in the poten t ia l  
curve, but  this value is too  small  to be in terpre table .  The  M O ' s  have been 
local ized by  the me thod  of Edmis ton  and Ruedenbe rg  [24]. 
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T a b l e  5. T o t a l  Energ ies  for  the  l inear  g e o m e t r y  of  the  Li 4 mo lecu le  c a l cu l a t ed  in the  M I M  

a p p r o x i m a t i o n .  The  ene rgy  va lues  a re  given for  t h e  exac t  c a l cu l a t i on  (EexM~M) a n d  for  the  c a l c u l a t i o n  
invo lv ing  the p o i n t  c h a r g e  a p p r o x i m a t i o n  (Epc~xM) b o t h  for  the  neglect  o f  the  n o n o r t h o g o n a l i t y  (b) 

a n d  t a k i n g  it i n to  a c c o u n t  (a). (All values  in a t o m i c  uni ts ,  for  n o t a t i o n  see text) a 

R MIM MIM MIM E~ (a) Ee~2M(b) Ep~ (a) Ep~ (b) 

A p p r o x i m a t i o n  i ,  1, 4 F 32 

3.0 - 2 9 . 6 4 4 8 8 8  - 2 9 . 6 4 4 8 7 6  - 2 9 . 6 4 5 1 5 0  - 2 9 . 6 4 5 1 3 6  
4.0 - 2 9 . 6 9 8 8 3 0  - 2 9 . 6 9 8 8 1 8  - 2 9 . 6 9 9 0 3 4  - 2 9 . 6 9 9 0 2 1  
5.0504 - 29 .719834 - 29 .719825 - 29 .719994 - 29 .719984 
6.0 - 2 9 . 7 2 5 3 3 4  - 2 9 . 7 2 5 3 2 8  - 2 9 . 7 2 5 4 6 4  - 2 9 . 7 2 5 4 5 7  

8.0 - 2 9 . 7 2 6 1 1 6  - 2 9 . 7 2 6 1 1 4  - 2 9 . 7 2 6 2 0 3  - 2 9 . 7 2 6 2 0 1  
12.0 - 2 9 . 7 2 5 2 7 8  - 2 9 . 7 2 5 2 7 8  - 2 9 . 7 2 5 3 2 3  - 2 9 . 7 2 5 3 2 4  
20.0 - 2 9 . 7 2 5 3 1 6  - 29 .725316 - 29.725333 - 29.725333 

A p p r o x i m a t i o n  1, 1, 4 F 30 

3.0 - 2 9 . 6 3 8 8 0 3  - 2 9 . 6 3 5 8 1 8  - 2 9 . 6 3 9 1 1 0  - 2 9 . 6 3 6 0 7 8  

4.0 - 2 9 . 6 9 3 4 1 1  - 29 .690324 - 2 9 . 6 9 3 6 4 4  - 2 9 . 6 9 0 5 2 6  

5.0504 - 2 9 . 7 1 4 9 2 3  - 2 9 . 7 1 1 5 4 8  - 2 9 . 7 1 5 0 9 8  - 2 9 . 7 1 1 7 0 6  
6.0 - 29 .720727 - 29 .717065 - 29.720863 - 29 .717194 
8.0 - 2 9 . 7 2 1 8 0 1  - 2 9 . 7 1 7 7 3 2  - 2 9 . 7 2 1 8 8 8  - 2 9 . 7 1 7 8 1 9  

12.0 - 2 9 . 7 2 1 0 2 2  - 2 9 . 7 1 6 7 5 5  - 2 9 . 7 2 1 0 6 4  - 2 9 . 7 1 6 8 0 0  
20.0 - 29 .721037 - 29 .716749 - 29.721053 - 29.716766 

A p p r o x i m a t i o n  2, 2, 2 F 30 

3.0 - 2 9 . 6 3 6 9 9 0  - 2 9 . 6 3 4 3 9 5  - 2 9 . 6 4 3 2 6 9  - 2 9 . 6 4 0 6 7 2  
4.0 - 29.692931 - 29 .689996 - 29 .696687 - 29.693735 
5.0504 - 2 9 . 7 1 4 6 4 3  - 2 9 . 7 1 1 3 2 7  - 2 9 . 7 1 7 1 0 8  - 2 9 . 7 1 3 7 7 8  
6.0 - 29 .720555 - 2 9 . 7 1 6 8 9 9  - 29.722317 - 29.718656 
8.0 - 29 .721774 - 29 .717687 - 29.722721 - 2 9 . 7 1 8 6 4 2  

12.0 - 2 9 . 7 2 1 0 5 9  - 2 9 . 7 1 6 7 7 9  - 2 9 . 7 2 1 4 2 6  - 2 9 . 7 1 7 1 5 3  
20.0 - 2 9 . 7 2 1 0 7 8  - 2 9 . 7 1 6 7 7 8  - 2 9 . 7 2 1 1 8 2  - 29 .716884 

A p p r o x i m a t i o n  2, 2, 2 F 28 

3,0 - 2 9 . 6 2 9 0 1 3  - 2 9 . 6 1 9 0 3 2  - 2 9 . 6 3 4 9 5 2  - 2 9 . 6 2 5 3 0 9  

4,0 - 29.686023 - 29 .676296 - 29.689619 - 29.680035 
5.0504 - 2 9 . 7 0 9 1 8 0  - 29.700053 - 2 9 . 7 1 1 5 4 8  - 29.702504 
6.0 - 29 .715760 - 29 .706846 - 29.717455 - 29.708603 
8.0 - 2 9 . 7 1 7 3 7 6  - 29 .708449 - 29.718291 - 29 .709404 

12.0 - 2 9 . 7 1 6 7 4 7  - 2 9 . 7 0 7 6 8 2  - 2 9 . 7 1 7 1 0 2  - 2 9 . 7 0 8 0 5 6  
20.0 - 2 9 . 7 1 6 7 9 6  - 2 9 . 7 0 7 7 1 9  - 2 9 . 7 1 6 8 9 6  - 2 9 . 7 0 7 8 2 6  

A p p r o x i m a t i o n  3, 3, 0 F 32 

3.0 - 2 9 . 6 2 3 0 9 6  - 2 9 . 8 0 0 5 6 2  - 2 9 . 6 2 9 3 7 0  - 2 9 . 7 9 7 8 5 8  
4.0 - 29 .687252 - 29 .787452 - 29.739871 - 29.847213 
5.0504 - 2 9 . 7 1 3 5 6 2  - 29 .762680 - 2 9 . 7 7 8 9 8 6  - 2 9 . 8 3 5 6 8 8  
6.0 - 2 9 . 7 2 1 6 0 9  - 2 9 . 7 4 6 3 8 9  - 2 9 . 7 8 4 9 2 6  - 2 9 . 8 1 4 5 3 8  
8.0 - 2 9 . 7 2 4 9 5 5  - 2 9 . 7 3 0 3 9 9  - 2 9 . 7 7 2 5 9 8  - 2 9 . 7 7 8 9 4 7  

12.0 - 2 9 . 7 2 5 2 3 9  - 2 9 . 7 2 5 4 1 7  - 2 9 . 7 4 7 4 9 2  - 2 9 . 7 4 7 6 3 2  
20.0 - 2 9 . 7 2 5 3 1 6  - 2 9 . 7 2 5 3 1 6  - 29 .731914 - 2 9 . 7 3 1 9 1 4  

aThe b o n d  d i s t ance  of  the  t w o  Li2 molecu le s  is kep t  fixed a t  its expe r imen t a l  va lue  of  

R = 5.0504 a.u.  
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A number of calculations have been made applying the method of molecules 
in molecules in various approximations. They will be described in the sequence of 
decreasing accuracy. The inner shell MO's on the two outer Li atoms are 
transferred and the set F includes all basis functions (i.e. altogether 32) in the 
first application. This approximation is denoted as 1, 1, 4 F32; the notation gives 
the number of LMO's transferred for the first and the second Li 2 molecule and 
the number of MO's redetermined in the region of interaction (4). By excluding 
the contracted s-type function on both outer Li atoms approximation 1, 1, 4 F 30 
results. If the inner shell MO's on the two inner Li atoms are transferred as well, 
the approximations 2, 2, 2 F 30 and 2, 2, 2 F28 are obtained, where F28 means 
that the contracted s-type function is excluded on all four Li atoms from the 
expansion of the bonding orbitals. In the crudest approximation all LMO's 
are transferred (3, 3, 0 F32). The energy values for all approximations are listed 
in Table 5. The potential curves for approximation 1, 1, 4 F32 are plotted in 
Fig. 2, curves b and c (b: interaction energy between the transferred LMO's 
calculated exactly, c: interaction energy calculated by the point charge approxi- 
mation). Both curves b and c are in excellent agreement with the potential curve a 
calculated by the ab initio SCF method. The nonorthogonality of the MO's 
causes nearly no error in this case as can be seen from Table 5. The correspon- 
ding potential curves coincide with curves b and c, respectively. The difference 

E(Li )[a.u.] 

-29.71C 

-29#15 

-29.720 

-29.725 

c 

e 

1 

d 

s'.o lolo ,5'.o R [au.i 
Fig. 3. Potential energy curve for L i 2 - L i z ;  approximation 1, 1, 4 F 3 0  (for notation and 

definition of a, b, c, d, e see text) 
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E(Li~.) [o .u . ]  

- 29.71( 

-29.715 

i 

-29.720 

-29.'72. = 

4 

I I I 

5.0 10.0 15.0 R [a.~] 

Fig. 4. Potential energy curve for Li 2 - L i 2 ;  approximation 2, 2, 2 F 30 (for notation and definition 
of a, b, c, d, e see text) 

A E = E M I M - - E  scF is nearly zero for all R. For approximation 1, 1 ,4F30 the 
potential curves are plotted in Fig. 3 (curve a: SCF result, b: energy value cal- 
culated exactly, nonorthogonality of the MO's taken into account [55], c: as b 
but nonorthogonality neglected, d: energy value calculated including point charge 
approximation, nonorthogonatity taken into account [55], e: as d only with non- 
orthogonality neglected). Curves b and c are nearly parallelly shifted from the 
exact SCF curve and curves d and e are good approximations to them. 

The agreement deteriorates slightly for approximation 2, 2, 2 F 30 (Table 5 and 
Fig. 4, the letters a, b, c, d and e have the same meaning as above). Curves b and c 
are still fairly parallel to a. But the point charge approximation in the calculation 
of the energy leads to a small shifting of the minimum to smaller R values and 
to a deeper minimum. This tendency is found as well for approximation 
2, 2, 2 F28 (Table 5 and Fig. 5 with a, b, c, d, e as defined above). For a good 
agreement with the SCF result (parallel shift of the potential curve) R must be 
larger than about 6-8 a.u. 

The approximation 3, 3, 0 F32, in which all MO's have been transferred, is 
unreasonable because the minimum in the potential curve is not reproduced 
(Table 5). It is concluded that it is the modification of the bonding orbitals in the 
two Li2 molecules which leads to bonding in Li 4. 

Table 6 summarizes the effect of the point charge approximation on the inter- 
action energy between the nonorthogonal transferred MO's: a is a very good 
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E(Li4)[o.u.] 

-29.70~ 

-29.71( 
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-29.720 
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Fig. 5. Po ten t i a l  energy curve for Li z - L i 2 ;  a p p r o x i m a t i o n  2, 2, 2 F 28 (for no t a t i on  and  def ini t ion 
of a, b, c, d, e see text) 

Table  6. Difference between the exact ly  ca lcu la ted  in te rac t ion  energy between the two s e t s  of 
t ransferred L M O ' s  and  the resul t  of the po in t  charge  a p p r o x i m a t i o n  for Li~ (AX = Xp~-  Xe~). 
The n o n o r t h o g o n a l i t y  of the M O ' s  is neglected.  (All values  in a tomic  uni t s ;  for no t a t i on  see text) 

a b c 

R A X  (1, 1, 4 F  32 A X  (2, 2, 2 s 30 AX (3, 3, 0 / "  32) 
and  1, 1, 4 F 30) and  2, 2s 2 F 28) 

3.0 - 0.000260 - 0.006277 0.002704 
4.0 - 0.000202 - 0.003739 - 0.059761 
5.0504 - 0.000158 - 0.002451 - 0.073009 
6.0 - 0.000129 - 0.001757 - 0.068149 
8.0 - 0.000087 - 0.000955 - 0.048548 

12.0 - 0.000045 - 0,000374 - 0.022214 
20.0 - 0.000017 - 0.000106 - 0.006599 
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Table 7. Approximate bond distance and binding energy B of the Li 4 molecule relative to two Li 2 
molecules (kept at their experimental bond length of R = 5.0504 a.u.). (For an explanation of the 

notation see the text) 

Method Ri~ml, [a.u.] B [kcal/mole] 

SCF 7.5 0.54 
1, 1,4F32b 7.5 0.5 
1, 1,4F32c 7.5 0.55 

1, 1, 4 F 30 b 7.5 0.49 
1, 1, 4 F 30 c 7.5 0.62 
1, 1, 4 F 30 d 7.5 0.52 
1, 1,4F30e 7.5 0.66 

2, 2, 2 F 30 b 7.5 - 8.0 0.44 
2, 2, 2 F 30 c 7.5 - 8.0 0.57 
2,2,2F30d 7.0 1.0 
2,2,2F30e 7.0 1.1 

2, 2, 2 F 28 b 8.0 0.36 
2, 2, 2 F 28 c 8.0 0.46 
2, 2, 2 F 28 d 7.0 - 7.5 0.88 
2, 2, 2 F 28 e 7.0 - 7.5 0.99 

3, 3, 0 F 32 o~ 0.0 

result,  b is sa t i s fac tory  for R > 8.0 a.u. and  c is comple te ly  useless, but  this is not  
surprising.  

In  Table  7 the a p p r o x i m a t e  b o n d  d is tance  RLiLi, and  b ind ing  energy of  the 
Li 4 molecule  with respect  to two Li 2 molecules  are  given as a s u m m a r y  on the 
qual i ty  of the var ious  a p p r o x i m a t i o n s  invest igated.  

3.C. Barrier to Internal Rotation in Ethane 

The basis set used in the ca lcu la t ion  of the ba r r i e r  to in ternal  ro t a t ion  in 
e thane consists  of 7 s - type funct ions  and  3 p- type  Gauss i an  lobe funct ions on 
every C a t o m  [-573 con t r ac t ed  to 5 s - type and  2 p- type funct ions and  of 3 s- type 
functions on every H a t o m  con t r ac t ed  to 2 s - type funct ions [533. F o r  the p- type  
funct ions the dis tances  f rom the center  have been chosen to b e  R a = __ 0.1 a.u. 
for ~11 =0.1992,  R 2 = _ +  0.08a.u.  for r /2=0.8516 and R3 =_+0 .05a .u .  for r/3 
= 4.1829. The  exper imen ta l  geome t ry  has been used for bo th  the s taggered and  
the ecl ipsed con fo rma t ion  of the e thane  molecule.  The to ta l  energy ca lcu la ted  
for the s taggered form is E S C r = -  79.090587 a.u. and  for the ecl ipsed form 
E scv = - 79.085792 a.u., which results  in a ro t a t i ona l  bar r ie r  of 3.01 kcal /mole .  
The best  wave funct ion for C2H 6 has been ca lcu la ted  by Veil lard,  who ob ta ined  
E S C V = - 7 9 . 2 3 7 7  a.u. for the s taggered  form and  a ro t a t iona l  bar r ie r  of 
3.07 kca l /mote  [583. The exper imen ta l  value is 2.928 kca l /mole  [59]. 

The theory  of molecules  in molecules  is app l i ed  in the fol lowing way. Two 
CH~ molecules  in the a p p r o p r i a t e  geome t ry  serve as f ragments  for the C2H 6 
molecule.  One  of the H a toms  and  its assoc ia ted  C - H  b o n d  orb i ta l  is t aken  
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out from each of the two C H  4 molecules. The inner shell MO's and the re- 
maining 6 C-H bond orbitals are transferred. Thus only the C-C bond orbital 
has to be determined. The different approximations, which have been investigated, 
are described as follows: 1) F34: all basis functions are included in F, 2) F28: 
the contracted s-type function on all of the H atoms is taken out, 3) F22: all 
basis functions on the H atoms are taken out, 4) F20: in addition to 3) the con- 
tracted s-type functions used mainly to describe the inner shell MO's on the C 
atoms are taken out. The exact calculation of the energy with the nonortho- 
gonality of the MO's taken into account is denoted by a [55], if the nonortho- 
gonality is neglected, b is obtained; c and d are the corresponding results when the 
interaction energy between the two sets of LMO's transferred from the fragments 
is calculated by the point charge approximation. The transfer has been done for 
the energy localized MO's of Edmiston and Ruedenberg [24] (ELMO), the 
LMO's of Boys [23], the LMO's of Magnasco and Perico [26] and the density 
localized MO's of the author [29]. It turns out that the results for the different 
LMO's are nearly the same throughout in agreement with the fact that the LMO's 
themselves do not differ significantly [29]. Only the data for the ELMO's will 
be given. It further on turns out that the approximations denoted by F34, F28, 
F22, and F20 all give nearly the same value for the rotational barrier and it is 
only of importance whether one is dealing with case a, b, c or d of the calculations. 
The results for the rotational barrier are (in kcal/mole): AE (a)= 2.38, AE (b)= 
- 2.06, A E (c) = 3.34, and A E (d) = 1.52. (The values are given for approximation 
F34, the values for the other cases differ by less than 0.1 kcal/mole). It is seen 
that the nonorthogonality of the MO's is important causing result b to have the 
incorrect sign. If the nonorthogonality is properly taken into account, the ro- 
tational barrier is about 20% smaller than the ab initio value, which is satis- 
factory. The point charge approximation gives an acceptable result in both cases 
and result c is quite a good approximation to a, which is surprising if one con- 
siders how unjustified this point charge approximation in the energy evaluation 
looks for such a small molecule as ethane. The fact that the other approximations 
(indicated by the notation F 28, F 22, F 20) do not remarkably affect the value of 
the rotational barrier is somewhat surprising in view of the crudeness of some of 
the approximations made. Karplus and coworkers [60] have analyzed the ro- 
tational barrier in ethane. They were able to show that nearly any wave function 
gives an acceptable value for the barrier, if it is only antisymmetric. From the 
present investigation one can in addition conclude that the antisymmetry with 
respect to the two CH3 fragments does not play a crucial role, because this has 
been neglected in the calculation of E M~ by the point charge approximation, but 
only the antisymmetry within each CH3 group taken together with the C-C 
bond orbital. 

The approximations made for C 2 H  6 c a n  lead to a considerable saving in the 
computation time. For the approximation denoted by F28 a saving of about 47 % 
in the integral computation could be achieved, for F22 and F20 a saving of about 
59 % and 60 %, respectively, would be possible. These numbers are given only as 
an orientation. They have to be taken with great care, because many integrals 
would anyway be zero or negligible and secondly the necessity of taking the non- 
orthogonality of the MO's into account modifies this result. 
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4. Conclusions 

�9 The following conclusions can be drawn from these applications. The con- 
struction of the wave function of a molecule from the wave functions of fragment 
molecules by transferring some of the LMO's and redetermining the MO's in 
the region of interaction is a justified approach which gives results in close 
agreement with those obtained by the ab initio method. In particular it has been 
shown for the cases considered to what extent LMO's are transferable between 
structurally related molecules, if the total energy is taken as the measure of 
transferability. Additional approximations have been suggested: a) the truncation 
of the basis set for the expansion of the MO's in the region of interaction, b) the 
similar approximation for the projection operator for orthogonality, c) the neglect 
of the nonorthogonality of the MO's in the calculation of the energy expectation 
value, and d) the point charge approximation for the calculation of the interaction 
energy between the two sets of transferred LMO's. These additional approxima- 
tions can be justified too. 

Because these approximations acquire validity for distances between the 
atomic centers involved of the order of two normal bond lengths, the sets F and A 
must be chosen with care. Except for the molecule C2H 6 the approximation of 
truncating the basis set has been examined for the case of the basis functions 
which have large exponential parameters and are mainly used to construct 
the inner shell MO's. In this case the distance between the centers must be about 
6 a.u. for the Li and Be atoms in order to obtain a parallel shift of the potential 
curves relative to the exact SCF result to within 10 -3 to 10 -4 a.u. or 0.6 to 
0.06 kcal/mole. (It has been stated at which distances agreement with the SCF 
result is obtained; in many practical questions, however, such stringent con- 
ditions might be unnecessary.) The same approximation can certainly be made for 
any type of basis function and any type of LMO, only the distance between 
the centers or centroids, respectively, must be greater to obtain equally good 
results. It is possible that in larger molecules this situation might improve, because 
the MO's in the region of interaction can serve as a kind of buffer. 

It has been found that the sets F and A are best chosen to be identical. It 
proves to be disadvantageous to allow in the set A degrees of freedom which are 
not allowed in the set F. In other words the projection operators Or and 04 should 
project into the same subspace. This result could have been anticipated from 
the bounds in Eq. (37). The operator determining the MO's in the region of 
interaction is consequently given by Eq. (46). 

Two different sources exist for the nonorthogonality of the MO's. The trans- 
ferred LMO's of the two fragments are nonorthogonal because they result from 
calculations on different molecules and because their expansion might have been 
truncated due to the deletion of some "basis functions in each of the two fragments. 
The MO's in the region of interaction are nonorthogonal to the transferred LMO's 
due to the projection effected by the operator O. The neglect of the non- 
orthogonality in the calculation of the total energy seems to be valid for the 
same distances between the atomic centers as the truncation of the basis set 
becomes valid. That this approximation works reliably, i.e. 'introduces essentially 
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only a parallel shift of the potential curves is vital for the aim of saving 
computational time. 

The point charge approximation for the calculation of the interaction energy 
between the two sets of transferred LMO's in the two fragments can only be 
valid for large distances where quantum mechanical effects of bonding play 
no role. It seems to be valid for distances equal to or larger than the ones 
necessary for the validity of the other approximations discussed above. It should 
be mentioned that this approximation can easily and in various ways be refined. 
A rather crude but extremely simple version has been examined in this work, 
which allows to reduce the computational expense to a " N  2 law", where N is the 
number of basis functions, for a significant part of the calculation leaving the 
"N 4 law" only in the region of interaction. The present version of the approxima- 
tion has given reasonable results in most cases considered, but its reliability in 
more complicated cases still remains to be demonstrated [51]. 

The theory of molecules in molecules discussed in the present article appears 
to be a promising starting point for reliable and time saving computations on 
larger molecules, but more experience is necessary with the approximations in- 
volved. This will supply the information where the method has to be ameliora- 
ted. 
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